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1 Introduction

This paper addresses the question of how and under what conditions partial tax coordina-

tion is sustained in a repeated interactions model. The coordination of tax policies among

sovereign jurisdictions has often been considered as a remedy against ine¢ ciently low taxes

on mobile tax bases induced by tax competition. Although tax coordination among all the

regions in the whole economy is desirable, generally, it is di¢ cult to achieve full tax coordi-

nation because some regions may prefer a lower tax status for commercial reasons (i.e., the

so-called tax heaven) or because the di¤erences in social, cultural, and historical factors or

economic fundamentals such as endowments and technologies may prevent the regions from

accepting a common tax rate. Therefore, partial tax coordination, rather than global or full

tax harmonization, is politically more acceptable. As a result, one could be compelled to resort

to partial tax coordination. Indeed, the scenario with partial tax coordination is of particular

importance since it is more likely to occur within a subgroup of countries like the European

Union (EU) member states with close economic and political links.

The academic concern has been fuelled by the increasing public debate on partial tax coor-

dination such as EU corporate tax coordination, which has let to produce several literature on

partial tax coordination. Konrad and Schjelderup (1999) demonstrate that in the standard tax

competition framework with identical countries, partial tax coordination among some regions

can improve not only the welfare of the cooperating regions but also of the noncooperating

ones. Rasmussen (2001) points out that by using a numerical analysis, the critical mass of

countries needed for partial coordination to matter signi�cantly is likely to be a very large

percentage of the economies of the world, with the main bene�t accrued to the nonparticipat-

ing countries. More recently, Sugahara et al. (2007) extend Konrad and Schjelderup�s model

by introducing regional asymmetries and show that Konrad and Schjelderup�s conclusion re-

mains valid even in a multilateral asymmetric tax competition model. Marchand et al. (2003)

addresses capital and labor taxes in a partial tax coordination model and show that when the

taxes are used for redistributive purposes, the redistribution from capital owners to workers

enhances welfare.
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These papers provide valuable insights into partial tax cooperation; however, they employ

a static framework despite the obvious fact that the interaction between regional or state

governments is not with once. Apart from the reality of a repeated interactions setting, it is

well known that repeated interactions facilitate cooperation, and hence, the use of a repeated

interactions model would provide a better explanation of sustained �scal cooperation among

regional governments. More importantly, because of the limitation of a static analysis, the

analytical focus of the abovementioned papers lies mainly on whether or not there is a welfare-

enhancing tax coordination as compared to a fully noncooperative Nash equilibrium, which

does not allow for any coalition among regions. However, it does not su¢ ce to guarantee the

sustainability of such a coalition of a subgroup. This is because in the context of static (one-

shot) tax competition, the structure of payo¤s accrued to regions displays characteristics of

�Prisoner�s dilemma�, which is mainly caused by a positive �scal externality associated with

regional tax policies (see Wildasin, 1989). In this case, the coordinating regions are unable

to reach a Pareto superior (or e¢ cient) outcome even if it exists and to sustain it as a self-

enforced equilibrium, because there is a strong incentive for them to deviate from a Pareto

improving coordinated tax rate in order to reap gains.

Furthermore, most of the abovementioned papers take a group of countries that may form

a tax-harmonized area as given and focus on whether or not tax harmonization is bene�cial to

this given group. In other words, the question of how such a partial tax coordination among

sovereign jurisdictions arises is abstracted. Thus, the given number of regions in the coalition

subgroup may be too large to deter some regions to deviate from this coalition. Therefore, it

is natural to explore under what conditions a coalition of a subgroup of regions is sustainable

as a next step for the analysis. Burbidge et al. (1997), within the context of static tax compe-

tition games, have explored whether a subgroup of regions satis�es �the stability of coalition�

suggested by d�Aspremont et al. (1983). According to this concept, the current participating

and nonparticipating regions should not have any incentive to change their positions; in other

words, a coalition is internally (externally) stable if there is no incentive for a member (non-

member) region to withdraw from (join) the coalition. However, partial cooperation in their

models need to implicitly or explicitly assume the existence of an enforcement mechanism for
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such collusive behavior. Indeed, Martin (2002, pp.297) criticizes this concept of cartel sta-

bility by stating in the context of cartels among �rms restricting output that �Static models

omit an essential element of the cost of defecting from an output-restricting equilibrium-the

pro�t that is lost once rivals realize that the agreement is being violated....Whether or not

output restriction is stable in a dynamic sense depends on whether or not gains from output

expansion. But this trade-o¤ cannot, by its inherently intertemporal nature, be analyzed in

a static model.�In contrast, the repeated game setting, by comparing such losses and gains,

would induce the participating regions to implement tax coordination as an equilibrium out-

come or their self-enforced behavior but also explicitly provide an enforcement mechanism by

fully utilizing punishment schemes to deter deviation, as long as the participating regions are

su¢ ciently patient.

There are several papers that investigate tax coordination in a repeated game setting.

Cardarelli et al. (2002) and Catenaro and Vidal (2006) utilize a repeated interactions model

to demonstrate that coordinated �scal policies or tax harmonization is sustainable. More

recently, Itaya et al. (2008) show that as the regional asymmetries in capital net exporting

positions, which is caused by regional di¤erences in endowments and/or production technolo-

gies, increase, regions are more likely to cooperate on capital taxes. Nevertheless, all these

papers deal only with global tax coordination among all regions.

This paper discusses partial tax coordination among regions in repeated interactions models

with two types of governments: one that behaves as tax-revenue maximizers and the other that

behaves as utility maximizers. In either setting, we not only show that partial tax coordination

is possible if competing governments are su¢ ciently patient but also that it is more likely

to prevail if the number of cooperating regions is smaller and the total number of existing

regions in the economy is larger. Further, these �ndings not only reveal that tax competition

potentially enhances the incentive of the regions to sustain partial tax coordination but also

that both regions within and outside the coalition end up being better o¤.

The remainder of the paper is organized as follows. Section 2 presents the basic model

structure and characterizes its one-shot, noncooperative solution. Section 3 constructs a re-

peated interactions model of partial tax coordination in which some regions cooperate with
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regard to their tax policies, while the other regions do not. Section 4 investigates the like-

lihood of partial tax coordination in a repeated interactions setting. Section 5 conducts the

same analysis in a model with linear utility. Section 6 concludes the paper with a discussion

on extending our model. Some mathematical derivations are relegated to appendices.

2 The Model of Tax Competition

Consider an economy composed of N identical regions. The regions are indexed by the

subscript i 2 N = f1; � � � ; Ng. In each region, there exist a regional government, house-

holds, and �rms; households are immobile across the regions, while capital is perfectly mobile.

These factors are used in the production of a single homogenous good. Following Bucovet-

sky (1991) and Hau�er (1997), we assume the constant-returns-to-scale production function:

f(ki) � (A�ki)ki, i 2 N, where the parameter A > 0 represents the level of productivity, and

ki is the per capita amount of capital employed in region i. We further assume that A > 2ki

in order to ensure a positive but diminishing marginal productivity of capital.

Public expenditures are �nanced by a source-based tax on capital. Firms behave compet-

itively, and thus, production factors are priced at their marginal productivity:

r = f 0 (ki)� � i = A� 2ki � � i; (1)

wi = f(ki)� kif 0 (ki) = k2i ; (2)

where � i is the capital tax rate imposed by the government in region i, r is the net return on

capital, and wi is the region-speci�c wage rate. The entire supply of capital in the economy

is K. Each household inelastically supplies one unit of labor to regional �rms so that the

households in each region own k � K=N units of capital. Capital is allocated across the

regions until the net return on capital is equalized. As a result, the arbitrage condition,

f 0 (ki) � � i = r = f 0 (kj) � � j for all i, j but i 6= j, must hold in equilibrium. By inverting

(1), the demand for capital in each region can be expressed by ki(r+ � i) = (1=2)(A� r� � i).
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After substituting all of the demand functions for capital, ki(r + � i), 8i 2 N, into ki in the

capital market clearing condition,
PN

h=1 kh = Nk, we can derive the equilibrium interest rate

r�:

r� = A� 2k � � , (3)

where � � (
PN

h=1 �h)=N is the average capital tax rate over all regions. By substituting (3)

back into ki(r+ � i), the equilibrium amount of capital demanded in region i can be expressed

as

k�i = k +
1

2
(� � � i) , 8i 2 N. (4)

Di¤erentiating (3) and (4) with respect to the capital income tax rate � i yields

@r�

@� i
= � 1

N
< 0,

@k�i
@� i

= �N � 1
2N

< 0, and
@k�j
@� i

=
1

2N
> 0, 8i; j 2 N but i 6= j. (5)

The objective of region i�s government is to maximize its tax revenue, denoted by Ri. In

the fully noncooperative symmetric Nash equilibrium, taking all of the other regional choices

as given, the government in region i independently chooses � i to maximize its tax revenue:

Ri = � ik
�
i .
1 Assuming an interior solution and taking (5) into account, we can compute the

symmetric Nash equilibrium tax rate:2

�NEN =
2Nk

N � 1 : (6)

Taking into account that � i = �NEN = � and using (3), the corresponding net return is given by

rNE = A� 2k� �NEN > 0. Moreover, it follows from (4) that k�i ends up being equal to k; that

is, there is no capital trade in equilibrium. Combining this nontrade equilibrium condition

and (6), the tax revenue, RNEN = �NEN k�i , can be rewritten as follows:

RNEN =
2Nk

2

N � 1 : (7)

1This simplest objective function enables us to explicitly obtain the minimum discount factor for the
repeated game setting described later and to carry out a comparative statics analysis with respect to some
principle parameters. We will later conduct the same analysis under linear utility.

2We always focus on an interior solution when solving an optimization problem, and so we omit this
quali�cation in what follows.
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3 Partial Tax Coordination in a One-period Game

Let us suppose now that some regions coordinate their tax policies. More precisely, the subset

of regions, denoted by S = f1; � � � ; Sg � N, forms a coalition to coordinate their capital tax

rates at some prescribed level, while the rest of the regions belonging to the complementary

set N� S = fS+1; � � � ; Ng act fully noncooperatively. A coalition is de�ned as any (proper)

subset of regions that contains at least two regions, and thus, the size of the coalition, S, is a

positive integer between 2 and N �1. In this game, all the participating regions cooperatively

choose a capital tax rate in order to maximize the sum of the members�regional tax revenues,

R(S) �
PS

h=1Rh, while each of the nonparticipating regions, which belongs to the set N� S,

unilaterally maximizes its own regional tax revenue. By symmetry, every participating region

willingly agrees to choose a common (or harmonized) capital tax rate. Taking as given the

choices of tax rates by the participating, except for i, and the nonparticipating regions, the

�rst-order condition for each coalition member is given by

@R(S)

@� i
= k�i +

SX
h=1

�h
@k�h
@� i

= 0, i 2 S: (8)

Since all the regions simultaneously choose their capital tax rates, taking as given the choices of

the tax rates by the coalition group and other nonparticipating regions, each nonparticipating

region unilaterally chooses a capital tax rate so as to maximize its own tax revenue Rj. As a

result, the �rst-order condition is

@Rj
@� j

= k�j + � j
@k�j
@� j

= 0, j 2 N� S: (9)

Substituting (4) and (5) into (8) and (9) and utilizing symmetry, we �rst obtain the best-

response functions of the participating and nonparticipating regions, respectively:

�S =
1

2
�N�S +

N

N � Sk; (10)

�N�S =
1

N + S � 1
�
S�S + 2Nk

�
; (11)
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where �S and �N�S represent the capital tax rates for regions within and outside the coalition

group, respectively. Note that the chosen regional tax rates given by (10) and (11) display

strategic complements, thus making these reaction functions upward sloping. Hence, this

property, together with the observation that @�S=@�N�S < 1 and @�N�S=@�S < 1, ensures the

uniqueness of the resulting Nash equilibrium, which we call �a Nash subgroup equilibrium�in

order to distinguish it from the fully noncooperative Nash equilibrium analyzed in the previous

section (see Konrad and Schjelderup, 1999).

By solving the simultaneous system of equations (10) and (11) for �S and �N�S, respec-

tively, we can compute the Nash subgroup equilibrium tax rates for the coalition group and

noncoalition regions, respectively:

�CS =
2N (2N � 1) k

(N � S) (2N + S � 2) ; (12)

�CN�S =
2N (2N � S) k

(N � S) (2N + S � 2) : (13)

The comparison of these tax rates with the fully noncooperative Nash equilibrium tax rate in

(6) results in

�NEN < �CN�S < �
C
S : (14)

We now explore whether the subgroup of the cooperating regions can improve their tax

revenues by implementing partial tax coordination. For this, we �rst substitute (12) and

(13) into (4) to obtain the demand functions for the capital of the coalition and noncoalition

regions, respectively:

kCS = k +
N � S
2N

�
�CN�S � �CS

�
; (15)

kCN�S = k +
S

2N

�
�CS � �CN�S

�
: (16)

By multiplying (12) and (13) by (15) and (16), respectively, we �nally obtain the tax revenues
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of the participating and nonparticipating regions:

RCS =
2N (2N � 1)2 k2

(N � S) (2N + S � 2)2
; (17)

RCN�S =
2N (N � 1) (2N � S)2 k2

(N � S)2 (2N + S � 2)2
. (18)

By comparing among (7), (17), and (18), we can show that

RNEN < RCS < R
C
N�S. (19)

It should be emphasized that both the regions within and outside the coalition clearly bene�t

from the creation of a subgroup coalition of cooperating regions. In other words, the creation

of a subgroup coalition generates higher tax revenues accrued to all regions as compared to

those in the fully noncooperative symmetric Nash equilibrium. The intuition behind the re-

sult is as follows. A coordinated increase in the capital tax rate chosen by the coalition group

tends to relax the intensity of tax competition between the coalition group and nonpartici-

pating regions, thereby inducing the latter to raise their tax rates as well (called the tax-rate

e¤ect), as indicated in (14). Moreover, since the tax rate set by the nonparticipating regions,

�CN�S, is less than that set by the coalition group, �
C
S , according to (14), the participating

and nonparticipating regions, respectively, become capital exporters and importers, which is

implied by (15) and (16) (called the tax-base e¤ect).

It is important to note that there is an incentive for regions to form a coalition in order to

coordinate their capital tax rates, since the tax revenues of the cooperating regions are larger

than those in the fully noncooperative symmetric Nash equilibrium. However, this gain does

not necessarily deter the deviation of a member region from the coalition on the grounds that

the regions can potentially bene�t more from being noncoalition members.
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4 A Repeated Game

In this section, we construct a simple repeated partial tax coordination game with a common

discount factor denoted by � 2 [0; 1). Let us assume that in every period, each participating

region agrees to coordinate its capital tax rate at the common tax rate �CS provided that all

of the other member regions had followed the common tax rate in the previous period. If a

participating region deviates from it, then their coalition collapses, triggering the punishment

phase that results in a fully noncooperative Nash equilibrium, which persists forever. The

condition to sustain partial tax coordination is given by

1

1� �R
C
S � RDi +

�

1� �R
NE
N , i 2 S; (20)

where RDi represents the tax revenue for the deviating region i. The left-hand side of (20) is

the discounted total tax revenue of region i when all coalition members belonging to the set

S continue to maintain �CS in�nitely. The right-hand side represents the sum of the current

period�s tax revenue associated with the best-deviation tax rate �Di and the discounted total

tax revenues associated with the fully noncooperative Nash equilibrium in all subsequent

periods. Because of symmetry, the conditions in (20) reduce to a single condition.

The best-deviation tax rate �Di is chosen so as to maximize the tax revenue of region i,

given that the other S� 1 participating regions and all N �S nonparticipating regions follow

�CS and �
C
N�S, respectively. Solving the �rst-order condition for the deviating region i for �

D
i

yields

�Di =
N

N � 1

�
k +

(S � 1) �CS + (N � S)�CN�S
2N

�
. (21)

By substituting (12) and (13) into (21), the best-deviation tax rate can be expressed as

�Di =
N (2N � 1) (2N � S � 1)k

(N � 1) (N � S) (2N + S � 2) . (22)

Comparing (22) with (6), (12), and (13) reveals that

�NEN < �Di < �
C
N�S < �

C
S . (23)
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That is, the best-deviation tax rate is the second lowest tax rate; in other words, it is still

larger than the fully noncooperative Nash equilibrium tax rate.

By substituting (12), (13), and (22) into (4) and rearranging, we can compute the amounts

of the capital demanded in the deviating region i, participating regions in the set S�fig, and

nonparticipating regions in the set N� S, respectively:

kDi = kDN�S +
�CN�S � �Di

2
, (24)

kDS�i = kCS �
�CS � �Di
2N

, (25)

kDN�S = kCN�S �
�CS � �Di
2N

. (26)

By straightforward comparison among these capital demands, it is seen that kDS�i < k
D
N�S <

kDi , which implies that deviator i not only changes its net capital position from an exporter

to an importer but also becomes the largest capital importer by levying the lowest capital

tax rate �Di in the deviation phase. Moreover, although the unilateral deviation of region i

from the coordinated tax rate ends up with the smaller capital demands of all regions except

i, the capital demand of nonparticipating regions, kDN�S, is still larger than that at the fully

noncooperative symmetric Nash equilibrium k.

By utilizing (12), (13), (22), (24), (25), and (26), we obtain the tax revenues of the deviating

region i, cooperating, and noncooperating regions, respectively:

RDi =
N(2N � 1)2(2N � S � 1)2k2

2(N � 1)(N � S)2(2N + S � 2)2 , (27)

RDS�i =
N(2N � 1)2 [2N(N � S � 1) + S + 1] k2

(N � 1)(N � S)2(2N + S � 2)2 ,

RDN�S =
N(2N � S) [2N2(2N � S � 4) + (2N � 1)S + 6N � 1] k2

(N � 1)(N � S)2(2N + S � 2)2 .

By straightforward comparison, we �nd that RDS�i < RDN�S < RDi . As expected, deviator i

captures the largest one-period tax revenue by setting the least capital tax rate.

Substituting (7), (17), and (27) into the equality in (20) and rearranging yields the mini-
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mum discount factor of the coalition members as follows:

� (S; N) � RDi �RCS
RDi �RNEN

=
(2N � 1)2 (S � 1)

(2S � 1) [2(2N + S)(N � S) + 2N(2N � S � 4) + 5S + 1] . (28)

Only when the actual discount factors for all the coalition members, �, which are common for

all regions, are greater than or equal to � (S; N), then the coordinated tax rate �CS can be

sustained as a subgame perfect Nash equilibrium of the repeated game.

Di¤erentiating the minimum regional discount factor � (S; N) with respect to the group

size S and the total number of regions N , respectively, yields

@� (S; N)

@S
=
4(2N � 1)2 [N(2N � 1) + 2S(S � 2)(N + S � 1) + 2S � 1]
(2S � 1)2 [2(2N + S)(N � S) + 2N(2N � S � 4) + 5S + 1]2

> 0, (29)

@� (S; N)

@N
= � 4(2N � 1)(S � 1) [2S(N + S � 2) + 1]

(2S � 1) [2(2N + S)(N � S) + 2N(2N � S � 4) + 5S + 1]2
< 0. (30)

Moreover, noting that lim
S, N!1

(S=N) � 1 and lim
S, N!1

(S2=N2) � 1, we have

lim
S, N!1

� (S; N) =
1

4� 2 lim
S, N!1

(S=N)� lim
S, N!1

(S2=N2)
� 1,

which, together with (29) and (30), implies that partial tax coordination can be sustained

irrespective of the group size, provided the actual discount factors of the coalition members �

are su¢ ciently close to 1.

These observations lead to the following proposition:

Proposition 1 (i) If all the participating regions are su¢ ciently patient, partial tax coordina-

tion can be sustained as a subgame perfect Nash equilibrium of the repeated game irrespective

of the size of the coalition;

(ii) the larger (smaller) the number of participating regions, the more di¢ cult (easier) it is for

partial tax coordination to prevail; and

(iii) the larger (smaller) the total number of regions in the economy, the easier (more di¢ cult)

it is for partial tax coordination to prevail.

To gain the insight underlying Proposition 1, we need to know how an increase in the
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coalition size S (or the total number of regions, N) a¤ects the tax revenues of the respective

regions at all phases of the present repeated game. To this end, we �rst di¤erentiate RCS with

respect to S to get

@RCS
@S

= kCS
@�CS
@S| {z }

tax-rate e¤ect (+)

+ �CS
@kCS
@S| {z }

tax-base e¤ect (�)

=
2N(2N � 1)2(3S � 2)k2

(N � S)2(2N + S � 2)3 > 0, (31)

which reveals that increasing the group size S has two opposite e¤ects on the tax revenues of the

participating regions; that is, the �rst and second terms in the middle expression of (31) stand

for the positive tax-rate and negative tax-base (i.e., �scal externality) e¤ects, respectively.

Since an increase in S mitigates the intensity of tax competition, the tax rates imposed by

the participating and nonparticipating regions both rise (recall that the choice variables are

strategic complements). Moreover, since it is con�rmed by straightforward computation that

the tax rate set by the coalition subgroup rises more than that set by the noncoalition regions,

i.e., @�CS=@S > @�CN�S=@S > 0, it further widens the tax di¤erential, �CS � �CN�S > 0. This

impact gives rise to a more capital �ight from the coalition group to the noncoalition regions,

thereby further shrinking the tax bases of the coalition members, as indicated in (15). As shown

in the last expression in (31), however, the positive tax-rate e¤ect dominates the negative tax-

base e¤ect in absolute value, thus resulting in larger tax revenues accrued to the coalition

members.

Similarly, the e¤ect of an increase in S on the tax revenue of the deviating region i can be

decomposed into the tax-rate and tax-base e¤ects as stated above:

@RDi
@S

= kDi
@�Di
@S| {z }

(+)

+ �Di
@kDi
@S| {z }

(+)

> 0. (32)

Although an increase in S unambiguously raises �Di as a result of the mitigated pressure of tax

competition as before (i.e., the positive tax-rate e¤ect), in order to identify the e¤ect on kDi

(i.e., the tax-base e¤ect), we need to know the e¤ect of increasing S on the tax rates set by the

respective regions (recall (24)). It is straightforward to show by verifying (12) and (13) that

@�CS=@S > @�
C
N�S=@S > @�

D
i =@S > 0. Hence, an increase in S enlarges the gap between the
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taxes set by the deviating region i and the coalition group, as well as that set by the deviating

region i and the nonparticipating regions. As a result, since the deviating region can attract

more capital from the participating and nonparticipating regions, the tax revenue accrued to

the deviating region unambiguously increases due to the resulting larger tax base multiplied

by the higher tax rate.

With these results, we can shed some light on how changes in the group size a¤ect the

likelihood of cooperation. Each participating region has to compare the immediate gain from

its unilateral deviation with the opportunity cost when reverting to the fully noncooperative

Nash equilibrium in all the subsequent periods in order to decide on whether or not to remain

in the coalition. To this end, suppose that the actual discount factor of the coalition member

is equal to the minimum discount factor � (S; N) de�ned by the equality in (20). Then

subtracting RCS from the resulting equality yields the following expression:

� (S; N)

1� � (S; N)
�
RCS �RNEN

�
= RDi �RCS . (33)

The left-hand side of (33) represents the discounted future (opportunity) costs from unilateral

deviation, while its right-hand side is the immediate gain from deviating. For ease of expo-

sition, we further decompose the discounted future costs into two components: the discount

factor component �(S; N)=(1� �(S; N)) and the opportunity cost incurred by the deviator,

RCS �RNEN . It follows from (7) (RNEN is independent of S), (31), and (32) that the future loss,

RCS � RNEN , and the immediate gain, RDi � RCS , are both increasing in S. Nevertheless, (29)

indicates that the gain is larger than the loss, and thus the coalition member has an incentive

to deviate. This stems from the fact that the positive e¤ect of increasing S on RDi should be

much larger than that on RCS , because the tax-rate and tax-base e¤ects in @R
C
S =@S operate

in opposite directions, whereas these two e¤ects in @RDi =@S do in the same direction. Hence,

the minimum discount factor � (S; N) should be higher so as to satisfy the equality in (33).

Next, we can investigate how increasing the total number of regions, N , a¤ects the incentive

of the participating regions to maintain partial tax coordination in an analogous manner.
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Di¤erentiating RCS with respect to N yields

@RCS
@N

= kCS
@�CS
@N| {z }
(�)

+ �CS
@kCS
@N| {z }
(+)

< 0:

Although we can identify the tax-rate and tax-base e¤ects of the increase in N on the tax

revenues accrued to the participating regions as before, the signs of these two e¤ects are

reversed to those resulting from increasing S. An increase in N intensi�es tax competition,

which in turn depresses the tax rates set by the participating and nonparticipating regions.

Since it can be further veri�ed that @�CS=@N < @�CN�S=@N < 0 � that is, the tax rate

set by the participating regions falls more than that set by the nonparticipating regions �

their tax di¤erential will shrink, thus reducing the amount of capital �ight from the coalition

to the nonparticipating regions and increasing the tax bases of the participating regions.

Nevertheless, since the negative tax-rate e¤ect dominates such a positive tax-base e¤ect, the

increase in N reduces the tax revenues accrued to the participating regions RCS .

In the deviation phase, by di¤erentiating (22) and (24) with respect to N , we can con�rm

that the tax-rate and tax-base e¤ects are both negative; hence, the e¤ect on the tax revenue

of the deviating region is as follows:

@RDi
@N

= kDi
@�Di
@N| {z }
(�)

+ �Di
@kDi
@N| {z }
(�)

< 0.

Since it is straightforward to check that @�CS=@N < @�CN�S=@N < @�Di =@N < 0, the increase

in N reduces all taxes as a result of the intensi�ed tax competition. Since the tax rates chosen

by the participating and nonparticipating regions fall more than that chosen by the deviating

region, the decreased tax di¤erential between the deviating and other regions reduces the tax

base of deviator i, kDi . This impact, coupled with the negative tax-rate e¤ect, reduces its tax

revenue, which clearly discourages an incentive to deviate.

Finally, in the symmetric Nash equilibrium phase, an increase in N creates the only neg-
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ative tax-rate e¤ect via the intensi�ed tax competition (recall k�i = k):

@RNEN
@N

= k
@�NEN
@N

< 0:

To sum up, although an increase in the total number of regions, N , reduces both the

immediate gain from deviating, RDi � RCS , and the future opportunity cost incurred by the

deviator, RCS � RNEN , in every period, (33) indicates that the reduction in RDi should be in

absolute value much larger than that in RCS . As a consequence, the only lower minimum

discount factor � (S; N) can satisfy the equality of (33).

Although the general message of the literature on tax competition is that there are various

potential ine¢ ciencies associated with tax competition, our analysis based on the repeated

interactions model reveals that the intensi�ed tax competition (associated with the larger

N) makes the coalition members more cooperative to sustain partial tax coordination, while

increasing the tax revenues of all the regions. In other words, tax competition is bene�cial

in the sense that it serves in enhancing the sustainability of welfare-improving partial tax

coordination.3 Since it is well documented that tax competition may have e¢ ciency- or welfare-

enhancing e¤ects, such as the bene�ts of restraining Leviathan tendencies for overexpansion of

the public sector (Edwards and Keen, 1996), or of limiting the incentive for time-inconsistent

governments to increase capital income taxes once an investment location decision has been

made (Conconi et al. 2007), our �nding, which has not been addressed in the literature

that focuses on full-tax coordination, would also provide another justi�cation to defend tax

competition.

5 The Model under Linear Preferences

In this section, we assume that the objective of regional governments is to maximize the

representative resident�s utility rather than the tax revenues. Each household residing in

3Note that although a coordinated tax increase yields a higher level of tax revenue accrued to the revenue-
maximizing Leviathan governments in our model, it does not imply an increase in the �waste� of resources
unlike the Leviathan government de�ned by Edwards and Keen (1996) which diverts tax revenue for its own
uses. This di¤erence arises because the primary function of the Leviathan government we have assumed in
this paper is to either transfers entirely tax revenue to residents or spends it to provide public goods.
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region i derives utility from the consumption of a single homogenous good xi and a local

public good (or redistributed income to households) Gi. By making use of (2), (3), and (4),

the budget constraint of a representative inhabitant in the region i, xi = wi + r
�k, can be

rewritten as xi = f (k�i )+ r
� �k � k�i �� � ik�i . Given the budget constraints for households and

the region i�s government, Gi = � ik�i , the government selects � i so as to maximize its resident�s

utility Ui de�ned below. To facilitate explicit analytical solutions to our repeated interactions

model, following Cardarelli et al. (2002) and Itaya et al. (2008), we assume a linear utility

function such as

Ui � U(xi; Gi) � xi + 
Gi;

= (A� k�i ) k�i + r�
�
k � k�i

�
+ (
 � 1) � ik�i , (34)

where 
 > 1 denotes a preference parameter toward the local public good Gi.4 Taking (5) into

account, we can obtain the fully noncooperative symmetric Nash equilibrium tax rate:

�NEN =
2N(
 � 1)k
(N � 1)
 . (35)

As in the previous model, taking as given the choices of tax rates by all the other regions,

all coalition members cooperatively choose a common capital tax rate so as to maximize the

welfare function: W (S) �
PS

h=1 Uh. The resulting �rst-order condition is

@W (S)

@� i
= (
 � 1)k�i + 


SX
h=1

�h
@k�h
@� i

+

SX
h=1

@r�

@� i
(k � kh) = 0, i 2 S, (36)

which, by symmetry, is reduced to a single equation. As before, each nonparticipating region

simultaneously and independently chooses its capital tax rate in order to maximize its own

utility Uj. The �rst-order condition leads to

@Uj
@� j

= (
 � 1)k�j + 
� j
@k�j
@� j

+
@r�

@� j
(k � k�j ) = 0, j 2 N� S, (37)

4Since the marginal rate of substitution between private consumption xi and a local public good Gi is equal
to 1, the condition 
 > 1 is necessary to ensure an interior solution for Gi.
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which also is reduced to a single equation. Solving (36) and (37) simultaneously for � i and

� j, together with (4) and (5), yields the Nash subgroup equilibrium tax rates (see Appendix

A for derivations):

�CS =
2 (
 � 1) [N(N(
 � 1) + 
(N � 1) + S)� S(S � 1)] k


 (N � S) [(2
 � 1) (N � 1) + 
S] , (38)

�CN�S =
2 (
 � 1) [N(N(2
 � 1)� S(
 � 1))� S(S � 1)] k


 (N � S) [(2
 � 1) (N � 1) + 
S] . (39)

The �rst-order condition, after substituting (38) and (39), yields the best-deviation tax

rate (see Appendix A for derivations):

�Di =
2 (
 � 1) k�


(N � 1) (N � S) [N(2
 � 1) + 1] [(2
 � 1) (N � 1) + 
S] , (40)

where � � N(N�1)[(2
�1)N+S][
(N�S)+N(
�1)+1]�(S�1)[N(
�1)+1][S(N�1)+


N ] > 0. Comparing the taxes given by (35), (38), (39), and (40), we obtain precisely the same

ranking regarding the tax rates as (23) (see Appendix B), so does the net capital-exporting

position of regions associated with the respective phases.

With these results, the condition to sustain partial tax coordination for each coalition

member region is expressed as

1

1� �U
C
S � UDi +

�

1� �U
NE
N , i 2 S, (41)

where UCS , U
D
i , and U

NE
N represent the utility levels associated with the cooperative (i.e.,

partial coordination), deviation, and punishment (i.e., the fully noncooperative symmetric

Nash equilibrium) phases, respectively. Utilizing (3), (4), (34), (35), (38), (39), and (40) and

rearranging, we can compute the minimum discount factor (see Appendix C for derivations):

� (S; N; 
) � UDi � UCS
UDi � UNEN

=

N2(S � 1)[N(2
 � 1)� (
 � 1)]2

[NS(2
 � 1) + S � 
N ]
 < 1; (42)

where 
 � [(N � 1)(
 � 1) + 
N ] [2(N � S)[N(2
 � 1) + 1] + 
N(S � 1)] + 
(N � S)(S �

1) [N(2
 � 1) + 1] > 0. Di¤erentiating the minimum discount factor in (42) with respect to
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the group size S, the total number of regions N , and the preference parameter 
, respectively,

yields the following results (see Appendix D):

@� (S; N; 
)

@S
> 0, (43)

@� (S; N; 
)

@N

����

2
�
1; 7+

p
13

6

� R 0 and
@� (S; N; 
)

@N

����

2
h
7+

p
13

6
; 1

� < 0, (44)

@� (S; N; 
)

@

< 0. (45)

Note, however, that when the number of regions, N , goes to in�nity, partial tax coordination

may not be sustained:

lim
S, N!1

� (S; N) =
1�

1� 2 lim
S, N!1

(S=N)

� �
2 (2
 � 1)� 
 lim

S, N!1
(S=N)

� R 1,
while when the coalition size of tax coordination is �nite, partial tax coordination is sustainable

because

lim
N!1

� (S; N) =



4
 � 2 < 1.

These observations lead to the following proposition:

Proposition 2 For the linear utility function given by (34), we have the following:

(i) If all the cooperating regions are su¢ ciently patient, partial tax coordination can be sus-

tained as a subgame perfect equilibrium of the repeated game provided the coalition size of tax

coordination is �nite;

(ii) partial tax coordination is more likely to prevail if the coalition size of tax coordination is

smaller and/or the preference toward a local public good is stronger; and

(iii) partial tax coordination is more likely to prevail if the total number of regions in the

economy is larger, provided the preference toward a local public good is su¢ ciently strong.

In order to understand how the parameters S, N , and 
 a¤ect the behavior of the respective

regions, we �rst di¤erentiate the welfare levels of the regions at the respective phases of the
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repeated game with respect to S, as follows:

@UNEN
@S

= 0; (46)

@UCS
@S

= (
 � 1) kCS
@�CS
@S| {z }

tax-rate e¤ect (+)

+ 
�CS
@kCS
@S| {z }

tax-base e¤ect (�)

+
�
k � kCS

� @rC
@S| {z }

terms-of-trade e¤ect (�)

> 0, (47)

@UDi
@S

= (
 � 1) kDi
@�Di
@S| {z }

(+)

+ 
�Di
@kDi
@S| {z }

(+)

+
�
k � kDi

� @rD
@S| {z }

(+)

> 0, (48)

where rC � A�2k�[S�CS+(N�S)�CN�S]=N and rD � A�2k�[(S�1)�CS+(N�S)�CN�S+�Di ]=N

represent the corresponding net returns in the cooperation and deviation phases, respectively.

Since the tax rates chosen by the participating and nonparticipating regions both rise in

response to the mitigated intensity of tax competition, so does the average tax rate � . The

increase in S, therefore, reduces the equilibrium net return: @rC=@S < 0 and @rD=@S < 0.

Moreover, (47) and (48), together with (4), (38), (39), and (40), reveal not only that the signs of

the tax-rate and tax-base e¤ects are the same as those in the previous model, but also that the

terms-of-trade e¤ect emerges as an additional term. The terms-of-trade e¤ect tends to reduce

the welfare of the coalition members (i.e., capital exporters), whereas it tends to enhance that

of the deviating region (i.e., capital importers), thereby unambiguously strengthening the

incentive of deviation. Since the capital importers (i.e., the nonparticipating regions) bene�t

from the higher tax rate due to lower capital payments resulting from a lower interest rate

(i.e., the terms-of-trade e¤ect), they enjoy more tax revenues than the capital exporters (i.e.,

the participating regions) do. This result is essentially the same as that in an asymmetric two-

country model of Wilson (1991), which demonstrates that a small country is always better o¤

than a large country as a result of tax competition. Since we can view the coalition subgroup of

cooperating regions and each noncooperating region outside the coalition as �a large country�

and �a small country�, respectively, each noncooperating region will be more better o¤ than

any of the coalition members.5

As before, consider the case where the actual discount factor of the coalition member, �,

5Also note that this result is consistent with Proposition 1 in Konrad and Schjelderup (1999) since tax
rates are strategic complements.
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is equal to the minimum discount factor � (S; N; 
). Subtracting UCS from both sides of the

resulting equality in (41), we can obtain the following expression:

� (S; N; 
)

1� � (S; N; 
)
�
UCS � UNEN

�
= UDi � UCS . (49)

A straightforward calculation shows that the one-period loss, UCS � UNEN , and the immediate

gain, UDi � UCS , are both increasing in the group size S. Nevertheless, (43) indicates that the

rise in UDi should be in absolute value much larger than that in UCS , and thus the minimum

discount factor � (S; N; 
) should be higher.

Similarly, we can compute the e¤ect of the larger N on the utility levels of the respective

regions in all phases of the repeated game as follows:

@UNEN
@N

= (
 � 1) k@�
NE
N

@N
< 0, (50)

@UCS
@N

= (
 � 1) kCS
@�CS
@N| {z }

(�)

+ 
�CS
@kCS
@N| {z }

(+)

+
�
k � kCS

� @rC
@N| {z }

(+)

< 0, (51)

@UDi
@N

= (
 � 1) kDi
@�Di
@N| {z }

(�)

+ 
�Di
@kDi
@N| {z }

(�)

+
�
k � kDi

� @rD
@N| {z }

(�)

< 0. (52)

The intuition is as follows. An increase in N strengthens the intensity of tax competition,

which decreases the average tax rate. It follows that @rC=@N > 0 and @rD=@N > 0. On the

other hand, it is seen from (50), (51), and (52) that at the cooperative and deviation phases,

the signs of the tax-rate, tax-base and terms-trade e¤ects are all reversed to those of changes in

S , because of the opposite e¤ects on the intensity of tax competition to those of changes in S.

The terms-of-trade e¤ect tends to augment the welfare of the coalition members (i.e., capital

exporters), while it tends to reduce the welfare of the nonparticipating regions (i.e., capital

importers), both of which together strengthen the incentive of cooperation. In contrast, the

level of welfare at the fully noncooperative Nash equilibrium falls in N due to the negative

tax-rate e¤ect (recall that there are no tax-base and no terms-trade e¤ects), which discourages

the incentive of cooperation. Although the welfare e¤ects caused by the increase in N except

for the last one tend to deter deviation, (44) indicates that the precise e¤ect on the minimum
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Figure 1: The minimum discount factor �(S; N; 
) for S = 3.

Figure 2: The minimum discount factor �(S; N; 
) for S = 10.

discount factor depends on the size of the preference parameter 
. As shown in Appendix

D, if 
 � (7 +
p
13)=6 ' 1:767, the minimum discount factor � (S; N; 
) unambiguously

falls in N , while it may or may not fall in N if 1 < 
 < (7 +
p
13)=6. To further identify

the latter case, we employ a numerical analysis, which shows that when 
 and S are both

small, the minimum discount factor rises in N . Figure 1 illustrates that both � (3; N; 1:1)

and � (3; N; 1:3) decline in N for lower values of N and then rise slightly in N . When S is

relatively large (i.e., S = 10 and S = 25), � (S; N; 
) monotonically falls in N irrespective of

the size of 
, as shown in Figures 2 and 3. In sum, it may be concluded that even in the model

with linear utility, increasing N in general strengthens the incentive of cooperation, except

when the group size S is extremely small.

Finally, di¤erentiating the welfare levels of the respective regions at all phases with respect

22



Figure 3: The minimum discount factor �(S; N; 
) for S = 25.

to 
 yields the following:

@UNEN
@


= (
 � 1) k@�
NE
N

@
| {z }
(+)

+ �NEN k| {z }
strengthened preference e¤ect (+)

> 0, (53)

@UCS
@


= (
 � 1) kCS
@�CS
@
| {z }

(+)

+ 
�CS
@kCS
@
| {z }

(�)

+
�
k � kCS

� @rC
@
| {z }

(�)

+ �CSk
C
S| {z }

(+)

> 0, (54)

@UDi
@


= (
 � 1) kDi
@�Di
@
| {z }

(+)

+ 
�Di
@kDi
@
| {z }

(+)

+
�
k � kDi

� @rD
@
| {z }

(+)

+ �Di k
D
i| {z }

(+)

> 0. (55)

A higher 
 stimulates the demand for a local public good in all phases, so that the inhabitants

in the regions prefer higher capital tax rates. This in turn weakens the intensity of tax

competition and thus raises the average tax rate, leading to a fall in the net return, i.e.,

@rC=@
 < 0 and @rD=@
 < 0. Hence, the resulting signs of the tax-rate, tax-base, and terms-

of-trade e¤ects are the same as those of changes in S (except for @UNEN =@
). In addition,

the increase in 
 also enhances directly the marginal utility of a local public good (i.e., tax

revenue), which we call the �direct preference e¤ect�. Although the increase in 
 weakens

the pressure of tax competition like the increase in S thereby intensifying the incentive of

deviation, they end up lowering the minimum discount factor, which is implied by (43) and

(45). This implies that the direct preference e¤ect has a dominant role in determining whether

or not to enhance the incentive of cooperation.
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6 Concluding Remarks

In this paper, we constructed a repeated interactions model where some regions collude to

coordinate their capital tax rates and the other regions do not, and found that partial tax

coordination can sustain as an equilibrium outcome if the regions are su¢ ciently patient.

We have also shown that partial tax coordination is more likely to prevail if the number of

cooperating regions is smaller and the total number of regions in the whole economy is larger.

In light of our results, global tax coordination is the most vulnerable outcome in the sense

that the incentive to deviate becomes the strongest. Hence, our repeated interactions model

further suggests that the size of a coalition, which implements tax coordination, should be

set equal to the maximum sustainable number of members in a coalition, since the welfare

of cooperating and noncooperating regions both increase in a coalition size. In other words,

there is a desirable intermediate coalition size in order to implement tax coordination because

there is a trade-o¤between the sustainability of a coalition and the welfare level of cooperating

regions; that is, although a much more encompassing tax coordination leads to a �rst-best

solution, sustainability becomes more di¢ cult.

These results would also provide a useful lesson for the intense discussion on corporate tax

coordination, including tax-rate harmonization, in the EU for many years. Partial tax coor-

dination within EU member nations would be desirable rather than world-wide organizations

such as a �World Tax Organization� suggested by Tanzi (1998) or multilateral agreements

such as a �GATT for Taxes� to achieve global tax coordination for the following reasons:

�rst, partial tax coordination would be more sustainable compared to global tax coordination

because of the existence of the signi�cant fringe of competing countries in the tax competition;

second, it is bene�cial not only for EU member nations, which maintain partial tax coopera-

tion, but also for the other nations outside the EU, since a collapse of the coalition would lead

to a harmful �race to the bottom�with all the nations in the world.

The results obtained in this analysis critically rely on the restrictive structure of the present

model, such as linear utility and a quadratic production function. To make the model more

realistic and the results more robust, it is certainly desirable that the analysis should be
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conducted under more general forms of those functions. For this purpose, we need to resort

to a numerical analysis. The more important extension is to include the introduction of

regional asymmetries in terms of capital endowments and/or production technologies and

explore how the likelihood of partial tax coordination is a¤ected by changes in the degree of

the asymmetries.

Appendix A

Making use of (4), (5), and (36) for all i 2 S yields the reaction function as follows:

�S =
(N � S) [N(
 � 1) + S] �N�S + 2N2(
 � 1)k

(N � S) [N(2
 � 1) + S] , (A.1)

where �S and �N�S denote the capital tax rates for cooperators and noncooperators, respec-

tively. Similarly, from (4), (5), and (37) for all j 2 N� S, we have the following best-response

function:

�N�S =
S [N(
 � 1) + 1] �S + 2N2(
 � 1)k
N [
(N � 1) + S(
 � 1)] + S . (A.2)

Solving (A.1) and (A.2) for �S and �N�S, respectively, gives the tax rates (38) and (39) in

the Nash equilibrium with a coalition subgroup. Further, using (4) and (5), the �rst-order

condition for the deviating region i can be rewritten as

�Di =
[N(
 � 1) + 1] [(S � 1)�S + (N � S)�N�S] + 2N2(
 � 1)k

(N � 1) [N(2
 � 1) + 1] . (A.3)

Substituting (38) and (39) into (A.3) and manipulating yields the best-deviation tax rate (40).
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Appendix B

From (35), (38), (39), and (40), we obtain the following:

�CS � �CN�S =
2N (
 � 1) (S � 1)k

(N � S) [(2
 � 1) (N � 1) + 
S] > 0; (B.1)

�CN�S � �NEN =
2S (
 � 1) (S � 1) [N(
 � 1) + 1] k


(N � 1) (N � S) [(2
 � 1) (N � 1) + 
S] > 0; (B.2)

�CN�S � �Di =
2N (
 � 1) (S � 1)[N(
 � 1) + 1]k

(N � 1) (N � S) [N(2
 � 1) + 1] [(2
 � 1) (N � 1) + 
S] > 0; (B.3)

�CS � �Di =
2N2 (
 � 1) (S � 1)[N(
 � 1) + 
(N � 1) + 1]k

(N � 1) (N � S) [N(2
 � 1) + 1] [(2
 � 1) (N � 1) + 
S] > 0; (B.4)

�Di � �NEN =
2 (
 � 1) (S � 1)[N(
 � 1) + 1][N(
(S � 1) + S(
 � 1)) + S]k

(N � 1) (N � S) [N(2
 � 1) + 1] [(2
 � 1) (N � 1) + 
S] > 0; (B.5)

which together produce the following ranking: �NEN < �Di < �
C
N�S < �

C
S .

Appendix C

From (3), (4), (34), (35), (38), (39), and (40), we have

UDi � UCS = kDi
�
kDi + 
�

D
i

�
� kCS

�
kCS + 
�

C
S

�
+ (rD � rC)k =

�
�CS � �Di

�
�1

4N2
; (C.1)

where �1 � 2(N � S)[N(
 � 1) + 1](�CS � �CN�S) + (N � 1)2(�CS � �Di ) � 2N [2N(
 � 1)k �


(N � 1)�Di ], and rC = A� 2k � [S�CS + (N � S)�CN�S]=N and rD = A� 2k � [(S � 1)�CS +

(N � S)�CN�S + �Di ]=N denote the equilibrium net returns at the cooperation and deviation

phases, respectively. Substituting (B.1) and (B.4) into (C.1) and rearranging yields

UDi � UCS =
N2 (
 � 1)2 (S � 1)2[N(2
 � 1)� (
 � 1)]2k2

(N � 1) (N � S)2 [N(2
 � 1) + 1] [(2
 � 1) (N � 1) + 
S]2
. (C.2)

Similarly, we have

UDi � UNEN = kDi
�
kDi + 
�

D
i

�
� k

�
k + 
�NEN

�
+ (rD � rNE)k

= (
 � 1)
�
�Di � �NEN

�
k +

�2

4N2
; (C.3)
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where �2 � [(N � S)(�CS � �CN�S)� (N � 1)(�CS � �Di )][(N � S)(�CS � �CN�S)� (N � 1)(�CS �

�Di )� 2N
�Di ], and rNE = A� 2k� �NEN stands for the net return at the fully noncooperative

symmetric Nash equilibrium. Inserting (B.1), (B.4), and (B.5) into (C.3) and rearranging

results in

UDi � UNEN =
(
 � 1)2 (S � 1)[NS(2
 � 1) + S � 
N ]k2



(N � 1) (N � S)2 [N(2
 � 1) + 1] [(2
 � 1) (N � 1) + 
S]2
: (C.4)

Substituting (C.2) and (C.4) into the formula � (S; N; 
) � (UDi � UCS )=(UDi � UNEN ) yields

the minimum discount factor (42).

Appendix D

Di¤erentiating the minimum discount factor (42) with respect to S, N , and 
, respectively,

yields

@� (S; N; 
)

@S
=

N2[N(2
 � 1)� (
 � 1)]2
[NS(2
 � 1) + S � 
N ]2
2 ��

fN(
 � 1) + 1g
� (S � 1) fN(
(S � 1) + S(
 � 1)) + Sg @

@S

�
> 0,

@� (S; N; 
)

@N
=
�2
N (S � 1) [N(2
 � 1)� (
 � 1)] �

[NS(2
 � 1) + S � 
N ]2
2 R 0 if and only if � Q 0,

@� (S; N; 
)

@

=
�2N2 (N � 1) (N � S) (S � 1) [N(2
 � 1)� (
 � 1)]	

[NS(2
 � 1) + S � 
N ]2
2 < 0,

where @
=@S � �[N(
 � 1) + 1][N(2
 � 1) + 
(2S � 3) + 2] � 2
2N(S � 1) < 0, � �

S(N � 1)3[N + S (N � 2)] + 2
4N3(2S � 1)[2S(N + S � 2) + 1]�N
3[2S3[6N (N � 1) + 1] +

2S2[2N(N �1)(5N �9)�3]+2NS(5N �3)+S�N2]+S
2(N �1)[N3(18S+7)+N2[S(6S�

43)� 3] +NS(23� 6S) +S(S � 3)]�S
(N � 1)2[N2(7S +5)+N [S(S � 15)� 2]�S(S � 5)],

and 	 � S[N(2
 � 1) + 1][N2(2
 � 1)2 � 
[
(S � 3) + 3] +N [
(7� 5
)� 2] + 1]�N
3 > 0.

Further computation reveals that � > 0 if 
 � (7 +
p
13)=6, while the sign of � is ambiguous

if 1 < 
 < (7 +
p
13)=6.
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